ADT7468
If THERM is enabled (Bit 1, Configuration Register 3 at
Address 0x78):
THERM Timer
?
Pin 20 becomes THERM.
The ADT7468 has an internal timer to measure THERM
? If Pin 14 is configured as THERM (Bit 0 and Bit 1 of
Configuration Register 4 at Address 0x7D), then THERM
is enabled on this pin.
If THERM is not enabled:
? Pin 20 becomes a 5 V measurement input.
? If Pin 14 is configured as THERM, then THERM is
disabled on this Pin.
Table 13. Configuring Pin 14
Bit 0 Bit 1 Function
0 0 TACH4
0 1 THERM
1 0 SMBALERT
assertion time. The THERM input can be connected to the
PROCHOT output of a Pentium 4 CPU to measure system
performance or be connected to the output of a trip point
temperature sensor, to name a couple of functions of the timer.
The timer is started on the assertion of the ADT7468’s THERM
input and stopped when THERM is unasserted. The timer
counts THERM times cumulatively, that is, the timer resumes
counting on the next THERM assertion. The THERM timer
continues to accumulate THERM assertion times until the
timer is read (it is cleared on read) or until it reaches full scale.
If the counter reaches full scale, it stops at that reading until
cleared.
1
1
GPIO
The 8-bit THERM timer register (Reg. 0x79) is designed such
that Bit 0 is set to 1 on the first THERM assertion. Once the
THERM as an Input
When THERM is configured as an input, the user can
time assertions on the THERM pin. This can be useful for
connecting to the PROCHOT output of a CPU to gauge
system performance.
The user can also set up the ADT7468 to run the fans at 100%
cumulative THERM assertion time has exceeded 45.52 ms, Bit 1
of the THERM timer is set and Bit 0 now becomes the LSB of
the timer with a resolution of 22.76 ms (see Figure 31).
When using the THERM timer, be aware of the following after a
THERM timer read (Reg. 0x79):
whenever the THERM pin is driven low externally by setting
the boost bit (Bit 2) in Configuration Register 3 (Address 0x78)
to 1. Note that to set this up, the fan must be already running,
for example, in manual mode when the current duty cycle is
above 0x00, or in automatic mode when the temperature is
1.
2.
The contents of the timer are cleared on read.
The F4P bit (Bit 5) of Status Register 2 needs to be cleared
(assuming that the THERM timer limit has been
exceeded).
above T MIN . If the temperature is below T MIN or i f the dut y cycle
in manual mode is set to 0x00, then pulling the THERM low
If the THERM timer is read during a THERM assertion, then
the following happens:
externally has no effect. See Figure 30 for more information.
T MIN
THERM
1.
2.
3.
4.
The contents of the timer are cleared.
Bit 0 of the THERM timer is set to 1 (because a THERM
assertion is occurring).
The THERM timer increments from 0.
If the THERM timer limit (Reg. 0x7A) = 0x00, then the
F4P bit is set.
THERM ASSERTED TO LOW AS AN INPUT:
FANS DO NOT GO TO 100%, BECAUSE
TEMPERATURE IS BELOW T MIN
THERM ASSERTED TO LOW AS AN INPUT:
FANS DO NOT GO TO 100%, BECAUSE
TEMPERATURE IS ABOVE T MIN AND FANS
ARE ALREADY RUNNING
Figure 30. Asserting THERM Low as an Input
in Automatic Fan Speed Control Mode
Rev. 3 | Page 25 of 81 | www.onsemi.com
相关PDF资料
ADT7473ZEVB BOARD EVALUATION FOR ADT7473
ADT7475EBZEVB BOARD EVALUATION FOR ADT7475
ADT7476EBZEVB BOARD EVALUATION FOR ADT7476
ADT7490ZEVB BOARD EVALUATION FOR ADT7490
ADZS-21262-1-EZEXT BOARD DAUGHTER FOR ADSP-21262
ADZS-BF-EZEXT-1 BOARD DAUGHTER ADSP-BF533/561KIT
ADZS-BFAV-EZEXT BOARD DAUGHT ADSP-BF533,37,61KIT
ADZS-BFSHUSB-EZEXT BOARD DAUGHTER EZ EXTENDER
相关代理商/技术参数
ADT7470 制造商:AD 制造商全称:Analog Devices 功能描述:Temperature Sensor Hub and Fan Controller
ADT7470_13 制造商:AD 制造商全称:Analog Devices 功能描述:Temperature Sensor Hub and Fan Controller
ADT7470ARQ 制造商:Analog Devices 功能描述:Temp Sensor Digital Serial (I2C) 16-Pin QSOP
ADT7470ARQ-REEL 制造商:Rochester Electronics LLC 功能描述: 制造商:Analog Devices 功能描述:
ADT7470ARQ-REEL7 制造商:Analog Devices 功能描述:Temp Sensor Digital Serial (I2C) 16-Pin QSOP T/R
ADT7470ARQZ 功能描述:IC SENSOR TEMP FAN CTRLR 16QSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 热管理 系列:- 标准包装:3,000 系列:- 功能:温度开关 传感器类型:内部 感应温度:85°C 分界点 精确度:±6°C(最小值) 拓扑:ADC(三角积分型),比较器,寄存器库 输出类型:开路漏极 输出警报:是 输出风扇:是 电源电压:2.7 V ~ 5.5 V 工作温度:-55°C ~ 125°C 安装类型:表面贴装 封装/外壳:SC-74A,SOT-753 供应商设备封装:SOT-23-5 包装:带卷 (TR) 其它名称:ADT6501SRJZP085RL7-ND
ADT7470ARQZ-REEL 功能描述:IC SENSOR TEMP FAN CTRLR 16QSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 热管理 系列:- 标准包装:2,500 系列:SilentSense™ 功能:温度监控系统(传感器) 传感器类型:内部和外部 感应温度:-55°C ~ 125°C,外部传感器 精确度:±2°C 本地(最大),±3°C 远程(最大) 拓扑:ADC(三角积分型),比较器,寄存器库 输出类型:I²C?/SMBus? 输出警报:是 输出风扇:是 电源电压:2.7 V ~ 5.5 V 工作温度:-55°C ~ 125°C 安装类型:表面贴装 封装/外壳:8-TSSOP,8-MSOP(0.118",3.00mm 宽) 供应商设备封装:8-MSOP 包装:带卷 (TR) 其它名称:MIC284-2BMMTRMIC284-2BMMTR-ND
ADT7470ARQZ-REEL7 功能描述:IC SENSOR TEMP FAN CTRLR 16QSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 热管理 系列:- 标准包装:2,500 系列:SilentSense™ 功能:温度监控系统(传感器) 传感器类型:内部和外部 感应温度:-55°C ~ 125°C,外部传感器 精确度:±2°C 本地(最大),±3°C 远程(最大) 拓扑:ADC(三角积分型),比较器,寄存器库 输出类型:I²C?/SMBus? 输出警报:是 输出风扇:是 电源电压:2.7 V ~ 5.5 V 工作温度:-55°C ~ 125°C 安装类型:表面贴装 封装/外壳:8-TSSOP,8-MSOP(0.118",3.00mm 宽) 供应商设备封装:8-MSOP 包装:带卷 (TR) 其它名称:MIC284-2BMMTRMIC284-2BMMTR-ND